NOAA News NOAA Home Page


NOAA's ATLANTIC OCEANOGRAPHIC AND METEOROLOGICAL LABORATORY

June 18, 1999 — The Atlantic Oceanographic and Meteorological Laboratory (AOML) in Miami, Florida, is one of 12 environmental research laboratories that work on environmental issues for NOAA's Office of Oceanic and Atmospheric Research (OAR). OAR research advances NOAA's ability to predict weather, helps monitor and provides understanding of climate and global change, as well as improve coastal ocean health.

AOML's mission is to conduct a basic and applied research program in oceanography, tropical meteorology, atmospheric and oceanic chemistry, and acoustics. The programs seek to understand the physical characteristics and processes of the ocean and the atmosphere, both individually and as a coupled system.

The principal focus of these investigations is to provide knowledge that may ultimately lead to improved prediction and forecasting of severe storms, better use and management of marine resources, better understanding of the factors affecting both climate and environmental quality, and improved ocean and weather services for the nation.

Originally under the jurisdiction of the Environmental Science Services Administration (ESSA), the forerunner of NOAA, AOML was founded in Miami, Florida, in 1967. Several months after NOAA was established in 1970, groundbreaking began on a new 12-acre federally funded research facility on Virginia Key. AOML dedicated its new location on Feb. 9, 1973. It celebrated its 25th anniversary in 1998.

AOML has four main research divisions: Hurricane Research, Ocean Acoustics, Ocean Chemistry, and Physical Oceanography.

To learn more about AOML visit: http://www.aoml.noaa.gov

Hurricane Research Division

The Hurricane Research Division (HRD) is NOAA's primary component for research on hurricanes. Its highest priority is improving the understanding and prediction of hurricane motion and intensity change. A key aspect of this work is the annual hurricane field program, supported by the NOAA Aircraft Operation's Center research/reconnaissance aircraft. Research teams analyze data from field programs, develop numerical hurricane models, conduct theoretical studies of hurricanes, prepare storm surge atlases, and study the tropical climate.

HRD works with the National Hurricane Center/Tropical Prediction Center in all phases of its research, the National Meteorological Center and the Geophysical Fluid Dynamics Laboratory—another of OAR's research labs—in research related to numerical modeling of hurricanes, and the National Severe Storms Laboratory—yet another OAR lab—in the study of landfalling hurricanes, as well as other NOAA groups, federal agencies, and universities in a variety of basic and applied research. 

Ocean Acoustics Division 

The Ocean Acoustics Division (OAD) gathers, analyzes and reports coastal ocean data on human-related discharges and their potential environmental impacts. Additionally, OAD has an ongoing research program on the use of acoustics to measure coastal and deep ocean rainfall, an important element in calculating the global energy balance for climate monitoring and prediction. The Division works in cooperation with other federal, state, and local authorities to maximize research knowledge for use in economically and environmentally important projects in the coastal ocean. 

Ocean Chemistry Division 

With a diverse scientific staff of marine, atmospheric, and geological chemists, as well as chemical, biological, and geological oceanographers, the Ocean Chemistry Division (OCD) is able to use multidisciplinary approaches to solve scientific research questions. The Division's work includes projects that are important in assessing the current and future effects of human activities on our coastal to deep ocean and atmospheric environments. 

Physical Oceanography Division 

The Physical Oceanography Division (PhOD) provides and interprets oceanographic data and conducts research relevant to decadal climate change and coastal ecosystems. This research includes the dynamics of the ocean, its interaction with the atmosphere, and its role in climate and climate change. Data is collected from scientific expeditions, both in the deep ocean and in coastal regions. Satellite data is processed and incorporated into the analyses. PhOD manages the Global Ocean Observing (GOOS) Center, which manages the global collection, processing, and distribution of drifting buoy data and the information collected from ocean temperature profilers. This information is crucial to understanding and predicting shifts in weather patterns and the relationship of the ocean and the atmosphere as a coupled system. 

 

-end-





This article comes from Science Blog. Copyright � 2004
http://www.scienceblog.com/community

Archives J