October 2004

Virginia Tech

New fiber optic sensors increase range

NSF provides funding to develop new sensor network technology

Blacksburg, Va. -- Researchers in Virginia Tech's Center for Center for Photonics Technology are on their way to solving a problem that is limiting the range and number of sensors used to safeguard civil and industrial infrastructure.

Real-time monitoring of oil and gas fields and pipelines, power networks, bridges, dams, and buildings, for instance, is important to economic and homeland security. A limitation to using sensors with different capabilities to create large, economical sensor networks has been the distance a signal will travel and the limited multiplexing capability. (Sensor multiplexing in a fiber sensor system means the sensors along a fiber cable can be interrogated by one optoelectronic signal-processing unit. The optical signal is first converted by light detection into an analog signal, which is then digitized for further signal processing.)

Researchers in the Center for Center for Photonics Technology (CPT) have discovered new methods for fabricating and spacing sensors within optic fibers, called UV-induced intrinsic Fabry-Perot interferometers (IFPIs), and have demonstrated that the resulting fiber optic sensors have a greater range.

"We believe we could place many more sensor elements along a single fiber cable and these fiber cables, placed in different geographical areas, could be linked by a computer network," said . Anbo Wang, professor of electrical engineering at Virginia Tech and director of the Center for Photonics Technology. "In theory, many such computer 'networks' can be linked to form a nation wide system."

Now Wang and his colleagues have received a $500,000 Sensor Initiative Research Grant from the National Science Foundation to develop "Highly Multiplexed Optical Fiber Sensing Networks for Infrastructure Monitoring."

Infrastructure monitoring requires sensors that can cover a large area with minimum maintenance, ultra-low cost per unit, and the ability to operate in harsh environments of different kinds. Semiconductor-based electronic sensors are low cost and can use wireless transmission to cover a large area. However, they are susceptible to electromagnetic interference (EMI), and restricted to relatively low temperatures (most below 125 C). One solution is to combine electronic sensors with the more-expensive optical fiber sensors, which are insensitive to EMI, offer great resolution and accuracy, and have much higher temperature capability. A roadblock has been the rather limited multiplexing capability usually within several hundred sensors along a single fiber cable.

Wang's group is confident that their sensor technology will increase the multiplexing capability by at least one order of magnitude. "In addition, this capability can be multiplied by many fold through sensor data fusion and computer networking so millions of sensors of different types in one system may become possible for real-time key infrastructure monitoring," says Wang.

FP interferometers have been used for temperature, strain, pressure, electromagnetic field, and ultrasound sensing. The Virginia Tech experiments demonstrated that the new UV-induced IFPI fiber sensor can also measure different physical parameters, including temperature, strain, and pressure, and have the ability to operate at temperatures above 600C.

Sensor performance characteristics will be optimized through continued work on sensor fabrication and multiplexing using both mathematical modeling and experimental analysis.

The research program will also educate a multidisciplinary workforce for sensor and network development through the support of postdoctoral associates and graduate, undergraduate, and high school students in the areas of electrical engineering, materials science, mechanical engineering, mathematics, and computer engineering. Frequent coordination with the entire team will permit cross-disciplinary training.



The research team, all of whom have received previous NSF funding, are:

Dr. Anbo Wang, CPT director and professor of electrical engineering
Dr. Gary Pickrell, assistant professor of material science and engineering
Dr. Kristie Cooper, research scientist in electrical engineering
Dr. Luiz DaSilva, associate professor of electrical and computer engineering
Dr. Tao Lin, professor of mathematics

Contact for additional information:
Electrical engineering Professor Anbo Wang, [email protected], 540-231-4363 and Dr. Gary Pickrell, [email protected], 540-231-4677


This article comes from Science Blog. Copyright � 2004
http://www.scienceblog.com/community