March 2004
Contact: Cattaliya Snider [email protected] 310-479-9929
Kumiko Hakushi [email protected]
Zengen
Zengen's new study reviews novel approach to control inflammation using melanocortin receptorsStudy supports development potential in several therapeutic areasWOODLAND HILLS, Calif. (March 3, 2004) � Zengen, Inc. announced today that its researchers have discovered that activation of melanocortin receptors (MCR) subtypes MC1R and MC3R could be a novel strategy to control inflammatory disorders.
The findings, "Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation," appear in the March 2004 issue of Pharmacological Reviews, a publication of the American Society for Pharmacology and Experimental Therapeutics (ASPET).
"MCR activation causes a collective reduction of the major molecules involved in the inflammatory process," said Anna Catania, M.D., professor of endocrinology, School of Internal Medicine, University of Milan and lead author of the study. "This discovery is significant because it shows that treatment with melanocortin peptides doesn't abolish the inflammatory response but instead modulates it. An advantage of melanocortins in the treatment of inflammation is that their influences are broad and are not restricted to a specific mediator or chemical pathway."
Recognition and cloning of five melanocortin receptors has greatly improved understanding of peptide-target cell interactions. Preclinical investigations indicate that activation of certain MCR subtypes, primarily MC1R and MC3R, could be useful in treatment of localized and systemic inflammatory disorders. These include: organ transplantation, chronic inflammatory diseases, acute inflammation, inflammation within the brain and neurogenerative disorders, peripheral neuropathies, systemic host reactions, ischemia and reperfusion injury and infections.
"The study results also indicate that certain melanocortin peptides have antimicrobial effects," said James Lipton, Ph.D., chief scientific officer and director of Zengen and study author. "Unlike corticosteroids, melanocortins do not reduce microbial killing activity, but enhance it. We are encouraged by these findings and will continue our research and development efforts in peptide technology."
Zengen's researchers also conducted a separate study on melanocortin receptors that was published in the February 2004 issue of the Journal of Leukocyte Biology. The study, titled, "Autocrine inhibitory influences of alpha-melanocyte-stimulating hormone in malignant pleural mesothelioma," showed that activation of express melanocortin 1 receptor (MC1R) by selective peptides or peptidomimetics might provide a novel strategy to reduce mesothelioma cell proliferation by taking advantage of an endogenous inhibitory circuit based on alpha-Melanocyte-Stimulating Hormone (a-MSH), and its receptor MC1R.
About Zengen, Inc. Founded in 1999, Zengen, Inc. is a biopharmaceutical company focused on discovering, developing and commercializing innovative products to treat and prevent infection and inflammation through application of its proprietary peptide technologies. Zengen is currently conducting Phase I/II clinical trials for CZEN 002, one of the Company's proprietary peptide molecules, for the treatment of vulvovaginal candidiasis, commonly known as vaginal yeast infection. For more information about Zengen, please visit www.zengen.com.
Zengen, Inc. Forward-Looking Statement Disclaimer This announcement may contain, in addition to historical information, certain forward-looking statements that involve risks and uncertainties. Such statements reflect management's current views and are based on certain assumptions. Actual results could differ materially from those currently anticipated as a result of a number of factors. The company is developing several products for potential future marketing. There can be no assurance that such development efforts will succeed, that such products will receive required regulatory clearance or that, even if such regulatory clearance were received, such products would ultimately achieve commercial success.
| |
|